Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Ping Xiao, ${ }^{\text {a* }}$ Wei-Dong Wang, ${ }^{\text {b }}$ Wei-Bing Zhang ${ }^{\text {a }}$ and Jia-Guo Wang ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry and Environmental Engineering, Hubei Normal University, Hubei, Huangshi 435002, People's Republic of China

Correspondence e-mail:
hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
H -atom completeness 96%
Disorder in solvent or counterion
R factor $=0.050$
$w R$ factor $=0.156$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Aquachloro[5-hydroxyisophthalato(1-)]-(1,10-phenanthroline)copper(II) 2.5-hydrate

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{5}\right) \mathrm{Cl}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$-$2.5 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cu}^{\mathrm{II}}$ atom is in a square-pyramidal geometry defined by one Cl^{-}anion, one aqua O atom, one carboxyl O atom belonging to one 5-hydroxyisophthalate anion, and two N atoms from a 1,10-phenanthroline molecule. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving 5-hydroxyisophthalate anions, the aqua ligands and the uncoordinated water molecules, along with weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, link the mononuclear units into a three-dimensional network structure.

Comment

Numerous isophthalate and 5-hydroxyisophthalate complexes have been extensively studied. They show a diversity of structures and a variety of framework topologies (Chen \& Liu, 2002; Hou et al., 2003; Plater et al., 2001; Xu \& Li, 2004; Wen et al., 2004). It should be pointed out that the synthetic conditions, such as H -atom receptors, temperature, solvents etc., play an important role in determining the compositions of these complexes. For example, the previously reported complex $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Xiao et al., 2004) and the title complex, $\left[\mathrm{CuCl}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$-$2.5 \mathrm{H}_{2} \mathrm{O}$, (I), were synthesized by the reaction of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, 5-hydroxyisophthalic acid and 1,10-phenanthroline. The former was obtained in a 20 ml mixture of N, N-dimethylformamide, water and methane (2:1:1 $v / v / v)$, while (I) was obtained in a 20 ml solution in N, N-dimethylformamide.

In (I), the $\mathrm{Cu}^{\mathrm{II}}$ atom has a five-coordinate environment defined by one Cl^{-}anion, one aqua O atom, one carboxyl O atom belonging to one 5-hydroxyisophthalate anion, and two N atoms from a 1,10-phenanthroline molecule (Fig. 1). The geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom is square pyramidal. The basal plane (atoms O1, O6, N1 and N2) consists of two N atoms from a 1,10-phenanthroline molecule, one carboxyl O atom from a 5-hydroxyisophthalate anion, and one aqua O atom.

Received 15 March 2005 Accepted 29 March 2005 Online 9 April 2005

Figure 1
The molecular structure of the asymmetric unit of (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{N} 2$ bond angles are 167.95 (13) and $165.74(15)^{\circ}$, respectively. The other angles around the $\mathrm{Cu}^{\text {II }}$ centre are in the range 81.89 (14)98.51 (11) \AA (Table 1). The apical position is occupied by a Cl^{-}anion, the $\mathrm{Cu} 1-\mathrm{Cl} 1$ bond distance of 2.5463 (12) \AA being longer than the apical $\mathrm{Cu}-\mathrm{Cl}$ bond distance found in the previously reported compound $\left[\mathrm{CuCl}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot\left(\mathrm{C}_{8} \mathrm{H}_{4}-\right.$ $\left.\mathrm{NO}_{6}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}[2.287(2) \AA$; Ye et al., 2004]. The 1,10-phenanthroline system is almost coplanar with the phenyl ring of the 5-hydroxyisophthalate anion, the dihedral angle between the planes being $1.9(2)^{\circ}$.

In the crystal structure of (I), there is an intramolecular hydrogen bond between the coordinated aqua O6 atom and the uncoordinated carboxylate O 2 atom. The hydroxy group of the 5-hydroxyisophthalate anion is involved in a weak intermolecular $\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{Cl} 1(1-x, 2-y, 1-z)$ hydrogen bond and an intermolecular $\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 5$ hydrogen bond. Moreover, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds are formed between the water molecules and the carboxylate O atoms (Table 2). These interactions link the mononuclear units to form a three-dimensional network structure (Fig. 2).

Experimental

A solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 0.852 \mathrm{~g})$ and 5 -hydrogenisophthalic acid ($0.5 \mathrm{mmol}, 0.910 \mathrm{~g}$) in $15 \mathrm{ml} N, N$-dimethylformamide was added slowly to a solution of 1,10-phenanthroline $(0.5 \mathrm{mmol}, 0.991 \mathrm{~g})$ in 10 ml of N, N-dimethylformamide. The mixture was left to stand at room temperature for about a month to afford blue crystals of (I).

Crystal data

```
[Cu(C88 H5 O
    2.5H2O
M
Triclinic, P\overline{1}
a=8.8508 (10) \AA
b=10.7516 (12) \AA
c=12.7592(15) A
\alpha=114.218(2)
\beta=95.770 (2)
\gamma=94.022(2)}\mp@subsup{}{}{\circ
V=1093.4 (2) \AA ^
```

$Z=2$
$D_{x}=1.590 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2931 reflections
$\theta=2.3-24.4^{\circ}$
$\mu=1.17 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, blue
$0.33 \times 0.15 \times 0.13 \mathrm{~mm}$

Figure 2
The crystal packing of (I), viewed along the b axis, showing the threedimensional network structure formed by the hydrogen-bonding interactions (dashed lines).

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.810, T_{\text {max }}=0.862$
8038 measured reflections
3911 independent reflections 3445 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0785 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.156$
$S=1.13$
3911 reflections
313 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& +1.351 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3
\end{aligned}
$$

$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=1.28 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.5463(12)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.009(4)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.957(3)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.010(4)$
$\mathrm{Cu} 1-\mathrm{O} 6$	$1.980(4)$		
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$95.62(8)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$167.95(13)$
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{O} 6$	$94.93(11)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$90.42(14)$
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$94.68(10)$	$\mathrm{O}-\mathrm{Cu} 1-\mathrm{N} 1$	$92.33(15)$
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$98.51(11)$	$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{N} 2$	$165.74(15)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6$	$92.98(14)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$81.89(14)$

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 8^{\text {i }}$	0.82	1.82	2.623 (6)	167
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.82	2.18	2.998 (4)	172
O6-H6A \cdots O2	0.82	1.86	2.601 (5)	149
O6-H6B \cdots O7 ${ }^{\text {iii }}$	0.89	1.77	2.642 (5)	167
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3^{\text {iv }}$	0.84 (4)	1.93 (4)	2.754 (6)	167 (6)
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 5$	0.83 (4)	1.97 (5)	2.771 (6)	162 (4)
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\text {ii }}$	0.82 (3)	2.05 (4)	2.844 (6)	163 (4)
$\mathrm{O} 8-\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.81 (3)	2.05 (4)	2.831 (10)	162 (5)
Symmetry code $-x+2,-y+2$,	(i) x, (iv) $x, y-$	$z \quad \text { (ii) }$	$+1,-y+$	$+1 ; \quad \text { (iii) }$

The H atoms of the water molecules were located in a Fourier difference map and refined isotropically, with $\mathrm{O}-\mathrm{H}$ distances restrained to $0.82(2) \AA$ and the $\mathrm{H} 7 A \cdots \mathrm{H} 7 B$ and $\mathrm{H} 8 A \cdots \mathrm{H} 8 B$

metal-organic papers

distances restrained to 1.45 (2) \AA. The remaining H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{O})$. At this stage, the maximum difference density of $3.59 \AA^{-3}$ indicated the presence of a possible atom site. This peak was found near atom $\mathrm{H} 8 B$, at a hydrogen-bonding distance of $2.27 \AA$. Attempts to refine this peak as a water O atom (O9) with full occupancy resulted in a high $U_{\text {iso }}$ value, and hence it was refined with occupancy 0.5 . The occupancy factor of atom O9 was initially found to be 0.51 (1) and later fixed at 0.50 . The H atoms of this water molecule could not be located in the difference map.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the Zhejiang Provincial Natural Science Foundation (grant No.

Y404294) and the Wenzhou Science and Technology Project of China (grant No. S2003A008).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
Chen, X. M. \& Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.
Hou, Y., Shen, E., Wang, S., Wang, E., Xiao, D., Li, Y., Xu, L. \& Hu, C. (2003). Inorg. Chem. Commun. 6, 1347-1349.
Plater, J. M., Foreman, M. R. St. J., Howie, R. A., Skakle, J. M. S., McWilliam, S. A., Coronado, E. \& Gomez-Garcia, C. J. (2001). Polyhedron, 20, $2293-$ 2303.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wen, Y. H., Cheng, J. K., Zhang, J., Li, Z. J., Kao, Y. \& Yao, Y. G. (2004). Inorg. Chem. Commun. 7, 1120-1123.
Xiao, H. P., Shi, Q. \& Ye, M. D. (2004). Acta Cryst. E60, m1498-m1500.
Xu, H. \& Li, Y. (2004). (2004). J. Mol. Struct. 690, 137-143.
Ye, M. D., Xiao, H. P. \& Hu, M. L. (2004). Acta Cryst. E60, m1516-m1518.

[^0]: (C) 2005 International Union of Crystallography

